1.1 Making Conjectures: Inductive Reasoning

Curricular Competencies:

n s

I can explore, analyze and apply mathematical ideas

I can explain and justify math ideas and decisions

I can reflect on math thinking

expression that is based on Conjecture: A testable -s not yet proven putdence Inductive Reasoning: Arewing a conclusion by observing properties in SPECIFIC examples patterns and identifying Conjectures can be tested and those that appear to be valid allow us to $C_{0,1}$

ending second given data

Ex: Study the following data about precipitation in Vancouver.

Precipitation in Vancouver (mm)												
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
2003	150.5	27.1	133.7	139.8	49.3	12.8	19.8	4.1	40.2	248.2	167.4	113.2
2004	249.6	45.8	132.8	90.2	68.6	49.6	43.6	28.6	53.6	155.4	136.6	160.8
2005	283.6	57.0	92.4	70.0	42.8	54.4	25.2	4.8	39.4	57.8	350.8	146.0
2006	181.4	116.0	214.8	76.2	37.0	80.0	53.0	8.4	73.6	155.2	116.2	210.6
2007	137.6	68.6	75.2	62.2	43.2	43.0	15.8	75.8	30.6	99.6	177.0	197.2

Use inductive reasoning to make some conjectures about precipitation in Vancouver.

Precipitation noreaves formatically between Sent-Oc Jan-Tres derrates a lot. Lower hurson summer months What mathematical calculations could you use to help-support your conjecture? <u>6 reph 11</u> compare find the average precipitation

er summer

Ex: Make a conjecture on the product of two odd integers.

 $1| \times 13 - 3 \times -1|$ -23×5 $S \times 7$ -69 23 143 The product of two odd integers is always add.

Inductive feasoning does not allow you to prove a conjecture to be tve.
Continuing a fattern is a common form of inductive reasoning. nect note
Ex. 1, 3, 7, ... Conjecture #1: add 2, add 4, add 6, adding (13)
conjecture #1: add 2, add 4, add 6, adding (13)
conjecture #2: a list of prime numbers (11) (13)
conjecture #2: a list of prime numbers (11) (13)
conjecture #3: term x2 + 1 (15)
conjecture #4: add two previous terms and the
conjecture #4: add two previous terms and the
subtaction
Ex: Make a conjecture about the difference between consecutive perfect squares,

$$4-1=3$$

 $1,4,9,16,25,36,49,64$
 $9-4=5$
 $16-9=7$
 $25-16=9$
Add

Ex: Study Example #4 on pages 10 and 11.

25-16=9

What conjecture did Marc make about the shape that is created by joining the midpoints of

adjacent sides in any quadrilateral? a parallelogram 0

What mathematical processes did Marc use to support his conjecture?

drew, a guidrilateral, measured it out with rule (, and with a fretrador

What was Tracey's conjecture? if forms a rhombus

Whose conjecture is better? Explain.

whose conjecture is better: Lxp		1		
Marc's used more	work, Traceys	could be	more acc	crate
Tracey's are labelly	ed they are	Goth us	ald but	are
only based one	example)			
Are they both correct? Explain.				