1.4 Proving Conjectures: Deductive Reasoning

Curricular Competencies

I can use play, inquiry and problem solving to gain understanding
 I can explain and justify math ideas and decisions

I can apply flexible and strategic approaches to problems

Ex. Make a deduction in each of the following cases.

TRANSITIVE PROPERTY
$A \rightarrow B, B \rightarrow C$ then $A \rightarrow C$
b. Every animal has a heart. All dogs are animals.
all dogs have hearts
c. The sum of any two consecutive whole numbers is an odd number. The whole numbers 11 and 12 are consecutive.

d. The diagonals of a parallelogram bisect each other. $P Q R S$ is a parallelogram.

The diagrams of PQRS will bisect each other
e. The diagonals of a rhombus intersect at right angles. KLMN is a rhombus. The diajonals of KLMN^{\prime} intersect at right angles Proof: mathematical argument showing that a statement is valid in all cases, no counter example exists
We can use \qquad reasoning to PROVE a statement is true.

Remember: We can use inductive _reasoning to make conjectures and find evidence to support our conjecture. We may be able to find a \qquad prove our conjecture is false but we can NEVER prove a conjecture is \qquad .

Ex 2: Example 2: Jon discovered a pattern when adding integers:

$$
\begin{aligned}
1+2+3+4+5 & =15 \\
(-15)+(-14)+(-13)+(-12)+(-11) & =-65 \\
(-3)+(-2)+(-1)+0+1 & =-5
\end{aligned}
$$

He claims that whenever you add five consecutive integers, the sum is always 5 times the median of the numbers. Prove Jon's conjecture using an algebraic method.
\rightarrow middle number
Let x be the median value

$$
\begin{aligned}
& x-2, x-1, x, x+1, x+2<\begin{array}{r}
\text { general case } \\
\text { for } 5 \text { cone }
\end{array} \\
& (x-2)+(x-1)+x+(x+1)+(x+2) \\
& 5 x+0
\end{aligned}
$$

$$
\underbrace{5 x}
$$

5 times the median value
Ex 3: Prove that the sum of any two odd numbers is an even number.

$$
\begin{aligned}
& 7+13=20 \\
& 11+3=14
\end{aligned}
$$

To represent even ψ_{s}

$$
2 x
$$

To represent odd *s

$$
2 x+1
$$

$$
\begin{gathered}
(2 x+1)+(2 y+1) \\
2 x+2 y+2 \\
2(x+y+1)
\end{gathered}
$$

Factor out a 2

C since 2 is a factor this is always even

Ex 5: The following is an example of a number trick. Use inductive reasoning and three trials to determine the answer each time.

Choose a number. Double it. Add 5. Add your original number. Add 7. Divide by 3. Subtract your original number.

	1	2	3
Original Number			
Double			
Add 5			
Add Original \#			
Add 7			
Divide by 3			
Subtract Original \#	4		

Prove deductively what the answer should be each time.

$$
\text { Let } x \text { be original } x
$$

$$
\begin{aligned}
& \quad x \\
& 2 x \\
& 2 x+5 \\
& 2 x+5+x \\
& 3 x+5
\end{aligned}
$$

double
add 5
ald original It
add 7

$$
3 x+12
$$

divide by 3

$$
\frac{3 x+12}{3}=x+4
$$

original

$$
x+4-x=4
$$

A two-column proof is used in mathematics to prove a statement is true. One of the columns contains facts that are known to be true and the other column contains
\qquad describing why the corresponding statement is true. (refer to p
29 ex 4)

Practice: pg 31 \#1, 2, 4, 5, 7, 8, 10, 15

$$
2,7,8
$$

