1.5: Proofs That Are Not Valid

Curricular Competencies
I can solve problems with persistence and a positive attitude I can explain and justify math ideas and decisions
I can use mistakes as opportunities to advance learning
Invalid proof A proof that contains an error in reasoning or that contains invalid cessumptions
Circular reasoning An argument that is incorrect because it maces use of the conclusion to be proven.
Consider the following statement: There are three errors in this sentence. Is the statement valid? Explain.
There are 2 errors which makes the statement invalided but that means another error. It is an invalid, otherwise it is both true and false at the same time.

This is an example of \qquad circular reasoning
Ex: The following is a graphical attempt to show that $64=65$.

does not state that all students attend French
Ex. Students at DPTS attend French classes. Jack is a student at DPTS. Therefore Jack attends French class. What is the error in the reasoning?
invalid assumption, not all students hove French.

Ex: Rev claims she can prove that $3=4$. She starts with 3 variables such that $a+b=c$ and then performs the following steps. Explain what she is doing at each step and identify where she went wrong. $a+b=c$

$$
\begin{aligned}
& \text { Int wrong. } a+b=c \\
& 4 a-3 a+4 b-3 b=4 c-3 c \quad \text { expanding the equation } \\
& \qquad(a=4 a-3 a)
\end{aligned}
$$

$4 a+4 b-4 c=3 a+3 b-3 c$, prearranged equation by using opposite operations
$\frac{4(a+b-c)}{(a+b-c)}=\frac{3(a+b-c)}{(a+b-c)}$, factored out a 4 on left and a 3 on the right 2 diving by $(a+b-c)$ to getrid of it.
$4=3$
by $(a+b-c)$ which equal to
$a+b=c$

$$
a+b-c=0
$$

Ex: Hossai is trying to prove the following number trick:
Choose any number. Add 3. Double it. Add 4. Divide by 2. Take away the number you started with.

Each time Hossai tries the trick, she ends up with 5. Her proof, however, does not give the same result.

Hossai's Proof

n	Choose any number.				
$n+3$	Add 3.	$2(n+3)$			
$2 n+6$					
$2 n+10$					
$2 n+5$					
$n+5$			\quad	Double it.	Add 4.
:---	:---				
Divide by 2.					

Where is the error in Hossai's proof?
Hossai dint dude by 2 properly.

In Summary:

- A single \qquad in reasoning will break down the logical argument of a deductive proof. This will results in an \qquad conclusion, or a conclusion that is not
\qquad by the proof.
- Division by \qquad always creates an error in a proof.
- \qquad reasoning must be avoided! Be careful not to assume a result that follows from \qquad .
- The reason you write a proof is so that others can \qquad and \qquad
it. After you write a proof, have someone else read it; if they get \qquad , fix it!

Practice pg 42 \# 1, 2, 3, 5, 6, 7, 9

