$\qquad$
2.2.2: Parallel Lines \& Deductive Reasoning

Curricular Competencies
B3: I can apply flexible and strategic approaches to problems
C1: I can explain and justify math ideas and decisions
We have been using deductive reasoning to find missing angles in diagrams. Sometimes, mathematicians use deductive reasoning in the form of a $\qquad$ .
Remember, one of the premises of deductive reasoning is that one bit of information leads to another bit of information and so on.

Transitive property: $\qquad$ If $a=b$ and $b=c$ then $a=c$, commonly used in soloing geometr.e problems.
Example 1: When a transversal intersects a pair of parallel lines, prove the alternate interior angles are equal.

Sketch:


| Statement | Justification |
| :--- | :--- |
| $\angle 1=\angle 2$ | vertically opposite |
| $\angle 1=\angle 3$ | corresponding $\angle s$ |
| $\angle 2=\angle 3$ | transitive property |
| alternate interior | same angle |
| $\angle s$ are equal |  |

Example 2: One side of a cellphone tower will be built as shown. Use the angle measures to prove that braces CG, BF, and AE are parallel.


Justification
alternate interior angles

BF \|AE
cG\|AE

transitive property.

$\angle 1=122^{\circ}$ $\angle 2=122^{\circ}$

$$
\angle a=58^{\circ}
$$

alternate exterior corresponding $L S$ interior $C S$

Example 4: Given: $Q P \| R S$
$R T$ bisects $\angle Q R S$

$$
Q U \text { bisects } P Q R
$$

Prove: $Q U \| R T$


Statement
QPIIRS
$\angle S R Q=\angle P Q R$
RT bisects $\angle Q R S$ Qu bisects $\angle P Q R$

$$
\angle T R Q=\angle R Q U
$$

$Q U \| R T$

Justification
Given
alt. interior Ls
goon
given
both bisected from equal angle alternate interior $<s$

