\qquad
2.3: Angles and Triangles

Can we prove that the sum of the measures of the interior angles of any triangle is 180° ?

$$
\begin{array}{rlrl}
\angle P D R & =\angle D R E & & \text { alt. int. } \angle S \\
\angle Q D E & =\angle R E D & & \text { alt. int } \angle S \\
\angle P D R+\angle Q D E+\angle R D E & & \text { angles on a line } \\
=180^{\circ} & & \\
\angle D R E+\angle R E D+\angle R D E & & \text { transitive property } \\
& =180 & &
\end{array}
$$

Example 1:
In the diagram, $\angle \mathrm{MTH}$ is an exterior angle of $\triangle \mathrm{MAT}$. Determine the measures of the unknown angles in $\triangle \mathrm{MAT}$.

$$
\begin{aligned}
\angle M T A=25^{\circ} & \text { supp } \angle S \\
\angle M A T=115^{\circ} & \angle \text { sin } \triangle \\
(80-40-25) &
\end{aligned}
$$

If you are given one interior and one exterior angle of a triangle, can you ALWAYS determine the other interior angles of the triangle? Explain with words and diagrams.

can find the
other 2

Can find the other 2

No, cant Solve for the other 2

Non-adjacent interior angles:

$$
\text { Two angles of a } \Delta \text { that do not }
$$

 have the same vertex as an exterior angle.

Example 2:
Prove $\angle \mathrm{e}=\angle \mathrm{a}+\angle \mathrm{b}$

$$
\begin{aligned}
& \angle a+\angle c=180^{\circ} \\
& \angle a+\angle b+\angle c=180^{\circ} \\
& \angle e=180^{\circ}-\angle c \\
& \angle a+\angle b=180^{\circ}-\angle c \\
& \angle e=\angle a+\angle b
\end{aligned}
$$

supplementary

$$
\text { Ls ina } \Delta
$$

transitive property

Example 3:
Determine the measure of $\angle \mathrm{NMO}, \angle \mathrm{MNO}$, and $\angle \mathrm{QMO}$.

$$
\begin{array}{ll}
\angle M N O=47^{\circ} & \text { alt.int. } \angle S \\
\angle N M O=94^{\circ} & \text { L'Sina } \Delta \\
\angle Q M O=19^{\circ} & \angle \text { 'sonaline }
\end{array}
$$

THNGS To ROMOMBER:

P 90 1-7, 9, 11, 14, 15, Triangle w/s
\qquad
angle
transitive property

