3.1.1 Derivative of a Function: The Definition

Recall: Instantaneous Rate of Change and the Slope of the Tangent Line:

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Definition of the Derivative: The derivative of f at x is defined as:

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Notation: $f^{\prime}, y^{\prime}, f(x), D x[y], \frac{d}{d x}[f(x)]$
Example 1: Applying the Definition

2. $f(x)=\sqrt{x+1} \quad \lim _{h \rightarrow 0} \frac{(\sqrt{x+h+1}-\sqrt{x+1})(\sqrt{x+h+1}+\sqrt{x+1})}{h}(\sqrt{x+h+1}+\sqrt{x+1})$

THiNK
$f^{\text {I }}(x)=(x+1)^{\frac{1}{2}}$
$f^{\prime}(x)^{2}=\frac{1}{2\left(x^{k}\right)^{\frac{1}{2}}-\frac{1}{2}} \lim _{h \rightarrow 0} \frac{x+h+1-(x+x)}{h(\sqrt{x+h+1}+\sqrt{x+1})}$
$\lim _{h \rightarrow 0} \frac{k}{x(\sqrt{x+h+1}+\sqrt{x+1})}$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{\sqrt{x+(0)+1}+\sqrt{x+1}} \\
& -f^{\prime}(x)=\frac{1}{2 \sqrt{x+1}}
\end{aligned}
$$

$$
\begin{aligned}
\text { 3. } f(x)=\frac{1}{x} \\
f(x)=x^{-1} \\
\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
\lim _{h \rightarrow 0} \frac{\frac{x}{x(x+h)}-\frac{(x+h)}{x(x+h)}}{h} \\
\lim _{h \rightarrow 0} \frac{x-x-h}{h x(x+h)} \\
f_{h}^{\prime}(x)=-x^{-2}
\end{aligned} f_{h \rightarrow 0} \frac{-x}{y x(x+h)}
$$

Alternate Definition of the Derivative at a Point useful for direct at a point $x=a$

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Example 2: Applying the Alternate Definition Differentiate $f(x)=\sqrt{x}$ using the alternate definition.

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a}(\sqrt{x}+\sqrt{a}) \\
& =\lim _{x \rightarrow a} \frac{x-a}{(x-a)(\sqrt{x}+\sqrt{a})} \\
& =\lim _{x \rightarrow a} \frac{1}{\sqrt{x}+\sqrt{a}} \\
& =\frac{1}{\sqrt{a}+\sqrt{a}} \\
& =\frac{1}{2 \sqrt{a}} 0_{0}=a_{0}=43
\end{aligned}
$$

$$
\frac{1}{2}
$$

at the point $(4,2)^{0} \quad f(x)=\sqrt{x^{2}}$

- evaluate the derivative
- find the slope of the tangent
- find the instantaneous rate of change

$$
f^{\prime}(a)=\frac{1}{2 \sqrt{a}}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 4} \frac{(\sqrt{x}-\sqrt{4})(\sqrt{x}}{x-4} \\
& \left.\lim _{x \rightarrow 4} \frac{x-4}{(\sqrt{x})(\sqrt{4}}\right)
\end{aligned}
$$

$$
\frac{1}{\sqrt{4}+\sqrt{4}}
$$

$$
\frac{1}{4}
$$

Example 3: Expressing the derivative as a limit
Express the derivative of each of the following functions as a limit.
a) $y=\cos x$
b) $y=3^{x}$
c) $y=3$

$$
\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h}
$$

$$
\lim _{h \rightarrow 0} \frac{3^{(x+h)}-3^{x}}{h}
$$

$$
\lim _{h \rightarrow 0} \frac{f(x+h)}{3}-3
$$

Example 4: Recognizing a given limit as a derivative
Given $f^{\prime}(x)$, determine $f(x)$.
a) $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$
\qquad
b) $\lim _{h \rightarrow 0} \frac{\sqrt[3]{x+h}-\sqrt[3]{x}}{h} \quad f(x)=\sqrt[3]{x}$
c) $\lim _{h \rightarrow 0} \frac{\tan (x+h)-\tan x}{h} \quad f(x)=\tan x$
d) $\lim _{h \rightarrow 0} \frac{\frac{x+h}{(x+h)^{2}+1}-\frac{x}{x^{2}+1}}{h}$

$$
f(x)=\frac{x}{x^{2}+1}
$$

e) $\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}$

$$
f(x)=e^{x}
$$

f) $\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right) \quad f(x)=\frac{1}{x}$

Assignment 3.1.1:
Page 101 - 102 \#1, 2, 4-6, 11, 12 \& Recognizing the Limit as a Derivative Sheet

