3.1.2 Derivatives, Graphs \& One-Sided Derivatives

Relationship betw

* Slope *

Characteristics:
f is decreasing where f^{\prime} is
 negative
f is increasing where f^{\prime} is \qquad positive
f has a max/min where f^{\prime} is

Example 2: Graphing f from f^{\prime}

Example 3: Graph f given: $f(0)=0, f$ is continuous and the graph of f^{\prime} below.

(t) so fincrasing its constant $m=2$ for f
derivative θ so f is decreasing
 cuntruous so point is filled in
even though f had open dots at $x=1$

One-Sided Derivatives
The Right-hand derivative at a

The Left-hand derivative at a

$$
\frac{f(a+h)-f(a)}{h}
$$

Example 4: One-Sided Derivatives Can Differ at a Point
Show that the following function has left-hand and right-hand derivatives at $x=0$, but no derivative there.

$$
f(x)= \begin{cases}x^{2}, & x \leq 0 \tag{a=0}\\ 2 x, & x>0\end{cases}
$$

$$
\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h}
$$

$=2$

$0 \neq 2$ so derivative

Assignment 3.1.2
Page 101-102 \# 7 - 10, 13, 14, 16-18, 22, 23, 25, 26, 28 AND:

1. Sketch a possible graph of $y=f(x)$ given the following information about its derivative.

$$
\begin{aligned}
& f^{\prime}(x)>0 \text { on } 1<x<3 \\
& f^{\prime}(x)<0 \text { for } x<1, x>3 \\
& f^{\prime}(x)=0 \text { at } x=1, x=3
\end{aligned}
$$

