3.2 Differentiability

How $f^{\prime}(a)$ Might Fail to Exist
A function will not have derivative at a point $P(a, f(a))$ where the slopes of the secant lines, $\frac{f(x)-f(a)}{x-a}$ fail to approach a limit as x approaches a. Graphically, this would look like one of the following:

1. A corner (where the one-sides derivatives differ)

$$
y=|x|
$$

2. A cusp (where the slopes of the secant lines approach ∞ from one side and $-\infty$ from the other) $f(x)$

$$
y=x^{\frac{2}{3}}
$$

3. A vertical tangent (where the slopes of the secant lines approach ∞ or $-\infty$ from both sides)

$$
y=x^{\frac{1}{3}}
$$

4. A discontinuity (which will cause one or both of the one-sided derivatives to be nonexistent)

$$
y=\left\{\begin{array}{rr}
-1, & x<0 \\
1, & x \geq 0
\end{array}\right.
$$

Example 1: Finding Where a Function is Not Differentiable
Find all points in the domain of $f(x)=|x-2|+3$ where f is not differentiable.

$$
\text { domain } f(x) \Rightarrow x \in \mathbb{R}
$$

$$
\text { not differentiable at } x=2
$$

Most of the functions we deal with ARE differentiable including: polynomials, rationals, trigonometric, logarithmic, \& exponential.

Differentiability Implies Local Linearity
Zooming in to "See" Differentiability

$$
f(x)=|x|+1
$$

$$
g(x)=\sqrt{x^{2}+0.0001}+.99
$$

Differential functions are locally linear which means that at some point "a" the function resembles its own tangent.

Derivatives on a Calculator
The Difference Quotient

$$
\frac{f(a+h)-f(a)}{h}
$$

The Symmetric Difference Quotient

$$
\frac{f(a+h)-f(a-h)}{2 h}
$$

* Calculator

$$
\text { uses } *
$$

These formulas can be used to APPROXIMATE the derivative. As h becomes very small, the approximation will be more accurate. In fact, $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{2 h}$ has been proven to be the same as the derivative. Use each method above to calculate the numerical derivative of $f(x)=x^{3}$ at $x=2$ if $h=0.001$.
a difference

$$
\begin{aligned}
& \frac{f(a+h)-f(c)}{h} \\
& \frac{(2+0.001)^{3}-2^{3}}{0.001} \\
& 12.006001
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { SDQ }^{\text {homer }}}{} \frac{f(a+h)-f(a-h)}{2 h} \\
& \frac{(2+0.001)^{3}-(2-0.001)^{3}}{2(0.001)}
\end{aligned}
$$

12.000001

Your calculator uses the symmetric difference quotient to find the derivative.

Be careful: your calculator can be "fooled". See Example 3 page 108.

Theorem: Differentiability Implies Continuity
If f has a derivative at $x=a$, then f is continuous at $x=a$.

Be careful: Differentiability implies continuity but continuity does not necessarily imply differentiability. Why not?

Assignment 3.2: Page 111-112 \#1-23 (use your graphing calculator to graph these functions where needed)

