Date \qquad

5.5 Z-Scores

The more we analyze data, the more in-depth our analysis can become.
Hailey and Serge belong to a running club in Vancouver. Part of their training involves a 200 m sprint. Below are normally distributed times for the 200 m sprint in Vancouver and on a recent trip to Lake Louise. At higher altitudes, run times improve.

At which location was Haley's run time better, when compared with the club results?

Location	Altitude (m)	Club Mean Time: μ for 200 (\mathbf{s})	Club Standard Deviation: $\boldsymbol{\sigma}(\mathbf{s})$	Bailey's Run Time (\mathbf{s})	Serge's Run Time (\mathbf{s})
Vancouver	4	25.75	0.62	24.95	25.45
Lake Louise	1661	25.57	0.60	24.77	26.24

Notice that Hailey's run time is less at Lake Louise but so is the club's. To make comparisons, the data must be standardized. We can use z-scores to accomplish this.

Standard normal distribution \qquad A normal distribution That has a mean of zero and a stand ard deviation of Z-Score A standardized value that indicates the A of data valves above or below the wean Z-Score Calculation Formula

$$
\begin{aligned}
& \text { Formula } \\
& z=\frac{x-\bar{x}}{\sigma}
\end{aligned}
$$

\qquad is the data value
\qquad is the mean of the data set
\qquad is the standard deviation

Compare Haley's Z-Scores for the two locations. Use this to determine the location where Hailey's run time was better.

Lake Louise

$$
\begin{aligned}
z & =\frac{x-\bar{x}}{\sigma} \\
& =\frac{24.95-25.75}{0.62}=-1.29
\end{aligned}
$$

$$
z=\frac{x-\bar{x}}{\sigma}
$$

$$
=\frac{24.77-25.57}{0.60}
$$

$$
\begin{array}{r}
=-1.33 \\
\text { smaller number } \rightarrow \text { she did better }
\end{array}
$$

What does it mean to have a Z-Score that is:

- Negative? \qquad lower than the mean for a given set of data
- Positive? \qquad
- Zero? same as the mean.

IQ tests are sometimes used to measure a person's intellectual capacity at a particular time. IQ scores are normally distributed, with a mean of 100 and a
 standard deviation of 15 . If a person scores 119 on an IQ test, how does this score compare with the scores of the general population?

Using a Z-Score Table:

$$
\begin{aligned}
z & =\frac{119-100}{15} \\
& =1.27
\end{aligned}
$$

Using the Graphing Talc:

(Calculating the area under the normal curve and to the left of the Z-Score.)
$2^{\text {nd }}$ Vars (Distr)
2: normalcdf(
Normalcdf(start, stop, μ, σ) Enter

What does this mean?
This means that a person with an IQ of 119 is greater than 89.80% of the general population
How would an IQ score of 78 compare to the general public?

$$
\begin{array}{rlrl}
z & =\frac{78-100}{15} & \text { FROM TABLE } \\
& =-1.47 & 0.0708
\end{array}
$$

That individual has a higher IQ Than 7.08% of the general pop.

Athletes should replace their running shoes before the shoes lose their ability to absorb shock. Running shoes lose their shock-absorption after a mean distance of 640 km , with a standard deviation of 160 km . Wack wants to replace his running shoes at a distance when only 25% of people would replace their shoes. At what distance should he replace his shoes?
0. 2500

Using a Z-Score Table:

\mathbf{z}	$\mathbf{0 . 0 9}$	$\mathbf{0 . 0 8}$	0.07	0.06	$\mathbf{0 . 0 5}$
-0.7	0.2148	0.2177	0.2206	0.2236	0.2266
-0.6	0.2451	0.2483	0.2514	0.2546	0.2578
$-\mathbf{0 . 5}$	0.2776	0.2810	0.2843	0.2877	0.2912

$$
z=\frac{x-\bar{x}}{\sigma}
$$

$$
160 \cdot-0.67=\frac{x-640}{160} \cdot 160
$$

$$
640 x-107.2=x-640+640
$$

The ABC Company produces bungee cords. When the manufacturing process is running well, the lengths of the bungee cords produced are normally distributed, with a mean of 45.2 cm and a standard deviation of 1.3 cm . Bungee cords that are shorter than 42.0 cm or longer than 48.0 cm are rejected by the quality control workers. If 20000 bungee cords are manufactured each day, how many would you expect the quality control workers to reject?

$20000 \times 0.0227=454$ cords rejected 0.9842 or 98.42%
A client has placed an order for 12000 bungee cords but will only accept bungee cords that are between 44.0 cm and 46.0 cm in length. Can this client's order be filled by one day's productions, with the equipment operating as is? Explain.

Need to Know:

- Use normalcdf(...) if finding zscore (\%) from a given data value
- Use invnorm(...) if finding data value from z-score

Page 264: 5, 6, 8-11, 13, 16, 19, 21

$$
8,10,11
$$

