6.0.2: Linear Inequalities in 1 Variable

Inequality: a statement using $\langle\rangle,, \leq, \geq$
It can be written in the form: symbols, line, interval notation
Boundary Point: separates values that are part of the solution
from the values that are not

Open circle: for

Closed circle: for \geq, \leq
3.
b) $-5>\frac{x}{3}-3$

$$
-15>x \text { OR } x<-15
$$

$-2 x<8$
c) $\frac{-2 x}{-2}<\frac{8}{-2}$
$0<8+2 x$
When multiplying or dividing by a negative
$-8<2 x$
$-4<$
sign you flip the

Example 2: Solve. State your answer in 3 different ways.
a) $x-1.6 \leq-5.6$

$$
\begin{aligned}
& +1.6 \leq+1.6 \\
& x \leq-4
\end{aligned}
$$

$(-\infty,-4]$
b) $-\frac{10}{4}>\frac{4 x}{4}$
$-\frac{5}{2}>x$

-8.
c) $\frac{x}{-8} \geq 3=-8$
$x \leq-24$

$$
(-\infty,-14]
$$

Example 3: Solve and graph, verifying your answers

1. Solve $-2 x>12$

$$
x<-6
$$

2. Graph

3. Verify
a. Check a point inside shading (-7) sub $i n$ to original inequality

$$
\begin{aligned}
-2(-7) & >12 \\
14 & >12
\end{aligned}
$$

b. Check a point outside shading

$$
-2(0)>12
$$

$0>12 x$

Example 4: Solve:

$$
\begin{aligned}
& \text { a) } \begin{array}{rl}
\frac{x}{4}+3>8 \\
-3 & 3 \\
4 \cdot \frac{x}{4} & >5 \cdot 4 \\
x & >20
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\text { b) }-3 x-10 & \leq 5 x+38 \\
+3 x \quad & +3 x \\
-10 & \leq 8 x+38 \\
-38 & -38 \\
-\frac{48}{8} & \leq \frac{8 x}{8} \\
-6 & \leq x
\end{aligned}
$$

Choose 0 (outside solutions)

$$
\begin{array}{r}
\frac{0}{4}+3>8 \\
3>8
\end{array}
$$

$3>8 \times 0$ is not a solution

Choose (-10)

$$
\begin{gathered}
-3(-10)-10 \leq 5(-10)+38 \\
30-10 \leq-50+38 \\
20 \leq-12
\end{gathered}
$$

not true - coisnot a solution

Example 5: Solve a problem using inequalities
Sarah has offers for a position as a salesperson at two local electronic stores. Store A will pay a flat rate of $\$ 80$ per day plus 3% of sales. Store B will pay a flat rate of $\$ 65$ per day plus 5% of sales. What do Sarah's sales need to be for store B to be the better offer?
a) Write an inequality to model the problem. Are there any restrictions on the variable? Explain.

$$
\begin{aligned}
& 5 \text { is amount of sales } \\
& 80+0.03 \mathrm{~s}<65+0.05 \mathrm{~s}
\end{aligned}
$$

b) Solve the inequality and interpret the solution

$$
s \geq 0
$$

cant have negative sales

$$
\begin{aligned}
80+0.03 s & <65+0.055 \\
80 & <65+0.025 \\
\frac{15}{0.02} & <\frac{0.025}{0.02} \\
\$ 750 & <s
\end{aligned}
$$

Sarah most sell $\$ 7501$ to make move at store B

Example 6: Model and solve a problem
A game store is offering games on sale for $\$ 39.50$, including tax. Sean set his spending limit to $\$ 150$. How many games can Sean buy and stay within his limit.
a) Write an inequality to model the problem. Are there any restrictions on the variable? Explain.

$$
\begin{array}{ll}
g: \# \text { of games } & g \geq 0, g \text { is a whole } \\
39.50 \mathrm{~g} \leq 150 & g \in W
\end{array}
$$

b) Solve the inequality and interpret the solution

$$
\begin{gathered}
\frac{32.50 g}{39.50} \leq \frac{150}{39.50} \\
g \leq 3.8
\end{gathered}
$$

Wist

