\qquad
6.1 Graphing Linear Inequalities in Two Variables

Linear Inequality relationship between two linear expressions, involving an inequality $(<, \nu, \geqslant \leq)$
solution set set of all possible solutions, often shaded on a grid.

Explore: For which inequalities is $(3,1)$ a possible solution? Justify.
a) $13-3 x>4 y$

$$
\begin{aligned}
13-3(3) & >4(1) \\
13-9 & >4 \quad(3,1) \text { is } \\
4 & >4 \times \text { not or aton }
\end{aligned}
$$

b) $y+x<10$
c) $2 y-5 \leq x$ $2(1)-5 \leqslant(3)$
$2-5 \leqslant 3$
$-3 \leq 3 \vee$ solution
d) $y \geq 9$
continuous connected set of numbers; includes \#s between any two given values
Discrete separate or distinct parts. (things that can be counted

Graphing:

Solution Region fart of the graph that represents the solution set
Half Plane \qquad region on one side of the linear relation

Example 1: Graph the solution set for each linear inequality
a) $-2 x+5 y \geq 10$. look like $y=m x+b$

$$
\begin{aligned}
& \frac{5 y \geq \frac{2 x+10}{5}}{5} \\
& y \geq \frac{2}{5} x+2
\end{aligned}
$$

Test (0,0) "don want it to work"

$$
\begin{aligned}
&-2(0)+5(0) \geq 10 \\
& 0+0 \geq 10 \\
& 0 \geq 10 \\
& x \text { that is } \\
& \text { what we } \\
& \text { wanted }
\end{aligned}
$$

b)

$$
\begin{aligned}
& 3 x-y>6 \\
& -y>\frac{-3 x+6}{-1} \\
& \frac{-1}{y}<3 x-6
\end{aligned}
$$

Test $(0,0)$ "dons wart"

$$
\begin{aligned}
& 3(0)-0>6 \\
& O>6 \\
& X
\end{aligned}
$$

Example 2: Graph the solution set for each linear inequality on a Cartesian plane.
$x=2$
a) $\{(x, y) \mid x-2>0, x \in \mathcal{R}, y \in \mathcal{R}\}$

$$
\begin{aligned}
x-2 & >0 \\
x & >2
\end{aligned}
$$

$$
\begin{aligned}
-3 y+6 & \geq-6 \\
-3 y & \geq-12 \\
-3 & \leq 4 \\
y & \leq 4
\end{aligned}
$$

Example 3: A sports store has a net revenue of $\$ 100$ on every pair of downhill skis sold
 and $\$ 120$ on every snowboard sold. The manager's goal is to have a net revenue of more than $\$ 600$ a day from the sales of these two items. What combinations of ski and snowboard sales will meet or exceed this daily sales goal? Choose two combinations that make sense, and explain your choices.
Xi\#\# of skis y :\# of snowboards

$$
100 x+120 y>600
$$

Find x-intercept

Find y-intercept

$$
\begin{aligned}
100(0)+120 y & >600 \\
120 y & >600 \\
y & >5
\end{aligned}
$$

Need to Know:

A \qquad set contains all of the points in the solution region

A \qquad set contains some of the points (with whole number or integer coordinates)

When no domain, range, or context is given, is set of \qquad

First graph the boundary ..
< or >, draw a \qquad line
\leq or \geq, with continuous solution set, draw a \qquad line
\leq or \geq, with discrete solution set, draw a \qquad line

To complete the graph ...
\qquad not on the boundary to see if it is in the solution region
if it is, shade the half plane \qquad , if not, shade the \qquad
if the solution set is discrete, \qquad with whole - number or integer coordinates

Assignment: Page 303: 2-4, 6, 8-10, 12, 13
choose 2

