Date - Cumuy Foundations Math 11 6.1 Graphing Linear Inequalities in Two Variables Linear Inequality relationship between two linear expressions an inequality (<,>,=, < Solution Set set all possible solutions, often shaded Explore: For which inequalities is (3, 1) a possible solution? Justify. a) 13 - 3x > 4yc) $2y - 5 \le x$ $\begin{array}{rcl} 13 - 3(3) > 4(1) & 2(1) - 5 \leq (3) \\ 13 - 9 & > 4 & (3,1) \\ 4 & > 4 \\ & x_{solution} \end{array} \begin{array}{rcl} 2(1) - 5 \leq (3) \\ z - 5 \leq 3 \\ -3 \leq 3 \\ & x_{solution} \end{array}$ 13 - 3(3) > 4(1)b) y + x < 10d) $y \ge 9$ Continuous connected set of numbers; includes #s between any two given values Discrete separate or distinct parts. (things that can be counted Graphing: 1. > 2. < 3. <u>></u> Solution Region ____art Half Plane region one side of the linear rel

b)
$$3x - y > 6$$

 $-y > -3x + 6$
 -1
 -1
 $y < 3x - 6$

Example 2: Graph the solution set for each linear inequality on a Cartesian plane.

Example 3: A sports store has a net revenue of \$100 on every pair of downhill skis sold

and \$120 on every snowboard sold. The manager's goal is to have a net revenue of more than \$600 a day from the sales of these two items. What combinations of ski and snowboard sales will meet or exceed this daily sales goal? Choose two combinations that make sense, and explain your choices

your choices.	
X: \$ of skis y: # of snowboards	Stow heards
100x + 120y > 600	65noulvertes OSK55 ²
Find x-intercept $x, y \in W$ $100 \times + 120(0) > 600$ (whole numbers)	-2
$100 \times + 120(0) > 600$ (numbers)	4
100×>600 ×>6	
tind y-intercept	> 600
100(0) + 1204 1204	>600
ע שלים שלים	55

Need to Know:

Α	_ set contains all of	the points in the solution region
	_set contains some of the points (with whole	
number or integer coordinates)		
When no domain, range, or context is	given, is set of	
First graph the boundary		
< or >, draw a	_line	
\leq or \geq , with continuous solution	set, draw a	line
\leq or \geq , with discrete solution se	t, draw a	line
To complete the graph		
not on the boundary to see if it is in the solution region		
if it is, shade the half plane		, if not, shade the
if the solution set is discrete, coordinates		with whole - number or integer

Assignment: Page 303: 2-4, 6, 8-10, 12, 13