\qquad
6.3 Graphing Systems of Linear Inequalities

To graph a system of linear inequalities:

1. Graph each \qquad inequality as before. Pay attention to \qquad sold
\qquad restrictions on the domain.
2. Clearly indicate the solution set. This is the region on the grid where the shaded sections \qquad overlap
3. If the shaded sections do not \qquad overlap there is \qquad no solution .

Example 1: Graph the solution set for the following system of inequalities. Choose two possible solutions from the set.
$3 x+2 y>-6$ dashed

$$
\begin{aligned}
& 2 y>-3 x-6 \\
& y>-\frac{3}{2} x-3
\end{aligned}
$$

fossible
Solutions

$$
(0,0),(2,2)
$$

How would the solution region change if $x \in I, y \in I$? How would it stay the same?

- Everything would appear as dots instead of shading,
coudnit connect $y \leq 3$ line coddnit connect $y \leq 3$ line
-Same areas would be covered

Example 2: Graph the solution set for the following system of inequalities. Choose two possible solutions from the set.

Example 3: A sloop is a sailboat with two sails: a mainsail and a jib. When a sail is fully out or up, it is said to be "out 100% ". When the winds are high, sailor often reef, or pull in, the sails to be less than their full capability. Jim is sailing in winds of 22 knots, so he wants no more than 80% of the mainsail out. He also wants more mainsail than jib. What possible combinations of mainsail and jib can Jim have out?

m : amount of mainsail
J : amount of

$$
\begin{aligned}
& m \leq 80 \\
& m>\text { solid } \\
& m j \\
& \rightarrow \text { dashed }
\end{aligned}
$$

Possible solutions

$$
M, j \geq 0
$$

20% jib 30% jib

$$
70 \% \text { mainsail }
$$

$$
\begin{equation*}
(30,70) \tag{20,80}
\end{equation*}
$$

Example
To raise money, Athletics is selling 500 T-shirts. The T-shirts are red or blue. Based on previous years' sales, they expect to see at least twice as many blue as red T-shirts.

Write a system of linear inequalities to represent this situation.
r :\# of red b :\# of blue
shirts shirts $r, b \in W$

$$
\begin{aligned}
r+b & \leq 500 \\
b & \geq 2 r \\
& >c \text { closed }
\end{aligned}
$$

Graph the system. dots
discrete
stippled

What are 3 possible solutions to this situation?
320 blue bOred 2 blue lied

$$
480 \text { blue, } 10 \text { red. }
$$

Page 317: $2,46-8,10,11$

